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Abstract In this paper, we address continuous, integer and combinatorial k-sum opti-
mization problems. We analyze different formulations of this problem that allow to
solve it through the minimization of a relatively small number of minisum optimiza-
tion problems. This approach provides a general tool for solving a variety of k-sum
optimization problems and at the same time, improves the complexity bounds of many
ad-hoc algorithms previously reported in the literature for particular versions of this
problem. Moreover, the results developed for k-sum optimization have been extended
to the more general case of the convex ordered median problem, improving upon
existing solution approaches.

Mathematics Subject Classification 90B80 · 90B85 · 90C10 · 90C27 · 90C35

1 Introduction

The concept of k-sum optimization is a natural extension of the standard minisum
optimization that looks for a feasible solution of a problem with the property that it
minimizes the sum of the k largest components of an n-dimensional cost vector. The
term k-sum optimization was coined by Gupta and Punnen in their paper from 1990.
Throughout the years, this type of an objective function has attracted the attention of
researchers, and one can find a number of results that consider k-sum optimization
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applied to a variety of feasible domains, ranging from continuous or integer variables
to pure combinatorial problems.

The idea of k-sum (also called k-centrum in the location analysis literature) opti-
mization can be traced back at least to the late seventies in the papers by Slater [40,41]
dealing with network location problems. Later, Punnen and Aneja in 1996 also derived
some new results on the optimization of k-sum objective functions, and Tamir [44],
Tamir et al. [46] and Mesa et al. [31] considered k-centrum location problems on
graphs. Kalcsics et al. [24,25] also considered a similar problem applied to different
location problems (continuous and discrete) and Ogryczak and Tamir [33] developed a
linear time algorithm for the minimization of some family of k-sum problems. Using a
different perspective, looking for robust solutions to combinatorial optimization prob-
lems, Bertsimas and Sim [6] and Bertsimas and Weismantel [7] revisited the problem
and extended an old result by Punnen and Aneja [38], that was instrumental in their
results. Puerto and Tamir [36] analyzed the problem of locating a tree shaped facility
using k-centrum criterion for the strategic and tactical models on a tree network. The
case of an s−t shortest path was studied byGarfinkel et al. [15]. In each of these cases,
the authors developed “ad hoc” arguments that help in solving each particular prob-
lem. Nevertheless, one observes the lack of a general methodology to be applicable in
great generality to solve these problems.

As mentioned, in Bertsimas and Sim [6], the authors provided very nice algorithms
for the class of the so called robust combinatorial optimization problems.Nevertheless,
for the important class of the k-sum flow problems they only provided an approximate
algorithm. Their approach left open the problem of the existence of a strongly poly-
nomial time algorithm for that class of problems. Hence, our initial motivation was
to address the above open problem in Bertsimas and Sim so as to develop an exact
strongly polynomial time algorithm. Starting with that analysis we have identified a
general theory that is applicable to the class of k-sum optimization problems regard-
less of the underlying feasible set, and that with minor modification can be cast to
(continuous) polyhedral sets, integer lattices and pure combinatorial problems.

This toolwill allowus to obtain newcomplexity bounds for some already considered
k-sum problems and to develop complexity results for newly addressed problems.
Roughly speaking, the methodology presented in this paper consists of solving a k-
sum optimization problem by solving a polynomial number of minisum problems in
the same or slightly modified feasible region. Here, we would like to remark that the
converse is not true: The minisum knapsack problem (with positive coefficients) is
NP-hard. However, the minimax version (k = 1) is in P. The contributions of this
paper are twofold: (1) to develop a new methodology applicable to the optimization
of k-sum objective functions in great generality, and (2) to obtain new algorithms and
complexity results for a number of problems, improving or getting similar bounds, but
using the same approach in all cases (See Table 1).

Under a more general paradigm, k-sum optimization can also be seen as a par-
ticular case of the ordered median objective function (see [32,34]). Ordered median
optimization has been intensively applied in Location Analysis, (Nickel and Puerto
[32], Puerto andRodríguez-Chía [35]) andmore recently extended to dealwith abstract
combinatorial optimization problems [12], and more specialized cases such as paths
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Revisiting k-sum optimization 581

or matchings on graphs [13]. Therefore, our goal is also to analyze if this methodology
can be extended further to themore general orderedmedian objective function (OMP).

The paper is organized in seven sections. In Sect. 2, we provide a general reformu-
lation of the k-sum optimization problem. The continuous, integer and combinatorial
versions of this problem are analyzed in Sects. 3, 4 and 5, respectively. Section 6
considers the extension of the previous methodology to the ordered median problem.
We conclude the paper with several remarks.

2 A reformulation of the k-sum optimization problem

Given a matrix A = (ai j ), i = 1, . . . ,m; j = 1, . . . , n, a pair of vectors c, d ∈ R
n ,

and a vector b ∈ R
m , consider the following k-sum problem (also called k-centrum in

the literature on location analysis),

min
x∈X

⎛
⎝cx + max

⎧⎨
⎩

∑
j∈Sk

d j x j : Sk ⊆ {1, . . . ., n}, |Sk | = k

⎫⎬
⎭

⎞
⎠ , (1)

with X = {x : Ax = b, x ∈ X }, where X is some domain set for x , for instance Rn+,
N
n or {0, 1}n .

Remark 2.1 Although we have referred to Problem (1) as the k-sum problem, the
above formulation is more general than the original k-sum optimization problem in
Gupta and Punnen [18], Punnen [37] where only the minimization of the k-largest
costs out of n is considered (c = 0). Actually, the so called centdian problem, see
Halpern [20] and Handler [21], namely the minimization of a convex combination of
the sum and the maximum costs, can also be seen as a particular case of the above
problem, where k = 1, c′ = αc, replaces c in (1), d ′ = (1 − α)c, replaces d in (1),
and α is a scalar in (0, 1). Therefore, the complexity bounds provided in this paper for
Problem (1) can be applied, among others, to centdian problems.

Theorem 2.1 Problem (1) is equivalent to solving the following problem,

Z∗
X = min

r∈R ZX (r) = min
r∈R

⎧⎨
⎩kr + min

x∈X {cx +
n∑
j=1

max{d j x j − r, 0}}
⎫⎬
⎭ (2)

Proof The inner maximum in Problem (1) can be rewritten as:

max
n∑
j=1

d j x jv j

s.t.
n∑
j=1

v j = k,

v j ∈ {0, 1}, ∀ j = 1, . . . , n.
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The above constraint matrix is totally unimodular and thus, the dual of this problem
is:

min kr +
n∑
j=1

p j

s.t. p j + r ≥ d j x j , ∀ j = 1, . . . , n,

p j ≥ 0, ∀ j = 1, . . . , n,

and the result follows. �	

3 The k-sum optimization problem on polyhedral sets

In this section, we focus on the case where the feasible domain X is a polyhedron,
which can be obtained for instance ifX = R

n+. Let XL := {x ∈ R
n : Ax = b, x ≥ 0}

be the region X for this particular case (continuous linear case).

Theorem 3.1 1. ZXL (r) is a piecewise linear convex function.
2. Suppose that there is a combinatorial algorithm (i.e., performs only additions, sub-

tractions, multiplication by a scalar and comparisons) of O(T (n,m)) complexity
to compute ZXL (r) for any given r . Then, Z

∗
XL

can be computed in O((T (n,m))2)

time. Moreover, if T (n,m) = O(n) and satisfies the bounded fan-in/fan-out prop-
erty (see [10]) then Z∗

XL
can be computed in O(n log n) time.

Proof First, we have

ZXL (r) = kr+ min
p,x

⎧⎨
⎩cx +

n∑
j=1

p j

⎫⎬
⎭

s.t. p j − d j x j ≥ −r, j = 1, . . . , n,

n∑
j=1

ai j x j = bi , i = 1, . . . ,m,

x j , p j ≥ 0, j = 1, . . . , n.

Taking the dual of the inner minimum problem, we have that

ZXL (r) := kr+ max
α,β

⎧⎨
⎩−r

n∑
j=1

α j +
m∑
i=1

biβi

⎫⎬
⎭

s.t. α j ≥ 1, j = 1, . . . , n,

−α j d j +
m∑
i=1

ai jβi ≥ c j , j = 1, . . . , n.

Therefore, ZXL (r) is the sum of a linear function plus the maximum of a finite
number of linear functions which is a piecewise linear convex function. The second
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statement for general T (n,m) follows from the parametric approach, see Megiddo
[29], obtaining a complexity of O((T (n,m)2). Next, if its comparisons can be per-
formed independently in s phases with Ci , i = 1, . . . , s, comparisons each one we
can apply the multiparametric search in Cohen and Megiddo [9] to obtain a com-
plexity of O(T (n,m)

∑s
i=1
logCi�). We observe that the application of this result

to a combinatorial algorithm T (n,m) with complexity O(n) will result in an overall
complexity of O(n log2 n) for computing Z∗

XL
. If in addition, T (n,m) satisfies the

bounded fan-in/fan-out property then Z∗
XL

can be computed in O(n log n) time, Cole
[10]. �	
Remark 3.1 We observe that there exists an earlier proof of the polynomiality for
computing Z∗

XL
, by Punnen [37], using an efficient separation oracle for a linear

program with an exponential number of constraints.

3.1 Applications in the continuous case

A particular important instance of the above linear model is the robust minimum cost
network flowproblem considered inBertsimas and Sim [6], Bertsimas andWeismantel
[7]. In these publications the authors provide an efficient algorithm to approximate the
optimal solution of that flow problem within any desirable accuracy level ε, but fail
to develop an exact strongly polynomial algorithm. As we will show in the following,
our approach gives an exact algorithm with strongly polynomial complexity.

Theorem 3.2 The k-sum minimum cost network flow problem can be solved in
O((m log n)2(m + n log n)2) time, where n and m are, respectively, the number of
nodes and edges in the underlying network.

Proof Observe that the evaluation of ZXL (r) for the minimum cost network flow
problem reduces to solving aminimumcost flowproblemwith piecewise linear convex
cost functions with at most one breakpoint per function. Indeed,

ZXL (r) = kr + min
x∈X cx +

n∑
i=1

n∑
j=1

max{di j xi j − r, 0}.

Observe that X is the flow polytope associated with the original graph G. To solve this
flow problem, we can duplicate each arc (i, j) of the original graph assigning capacity
r/di j and zero cost to the first duplicate arc and no capacity and cost di j to the second
one. The resulting flow problem has linear costs on the arcs. Hence, the complexity
of evaluating ZXL (r) is O((m log n)(m + n log n)) for a given value of r , Ahuja et al.
[1].

This implies that we can apply Theorem 3.1.ii to the problem and thus, the overall
complexity of solving the k-sum minimum cost flow problem is O((m log n)2(m +
n log n)2). �	

We can improve upon the complexity bound at the end of the proof, by using the
parallelization techniques in Megiddo [30], Section 6.
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3.1.1 The k-centrum path problem on a tree

Another model where we can apply the same machinery is the location of k-centrum
paths on a tree, i.e., locating a path on a tree network that minimizes the sum of the
k-largest distances from the nodes of the tree to the path. We are given a rooted tree
T = (V, E), with root v0 and |V | = n. Let A(T ) denote the continuum set of points
on the edges of T . In this framework we call Y a subtree if it is a closed and connected
subset of A(T ). Each edge e ∈ E has a positive length �e and it is assumed to be
rectifiable. The edge lengths induce a distance function on A(T ). For any pair of
points x, y ∈ A(T ), we let d(x, y) denote the length of the unique simple path in
A(T ) connecting x and y. Let wi be a nonnegative weight associated with vi ∈ V . A
path containing v0 which minimizes the weighted sum of distances can be found in
O(n) time, Averbakh and Berman [4].

Theorem 3.3 The k-centrum path problem on a tree can be solved in O(n2 log n)

time.

Proof Consider the following valid formulation for the path containing node v0, the
root, which minimizes the weighted sum of distances to the path. Define the variable
xq ∈ [0, 1] for any eq ∈ E for q = 1, . . . , n − 1, let P[vq , v0] be the unique path
from node vq to the root node v0 and ES(eq) be the set of descendant edges of eq ,
i.e., given v, an endnode of ē ∈ E , we say that ē ∈ ES(eq) iff eq ∈ P[v, v0].

min
n−1∑
q=1

wq

∑
j :e j∈P[vq ,v0]

� j (1 − x j )

s.t.
∑

q:eq∈ES(ei )

xq ≤ xi , ∀i = 1, . . . , n − 1,

0 ≤ x j ≤ 1, ∀ j = 1, . . . , n − 1.

We observe that the above linear formulation has an integer solution since the con-
straints are flowconservation constraints and therefore thematrix is totally unimodular.
This formulation allows us to apply Theorem 3.1 to this model for the minimization
of the sum of the k-largest weighted distances. Indeed, by the results in Averbakh
and Berman [4], the evaluation of ZXL (r) has O(n) complexity, then by Theorem 3.1
the corresponding k-centrum problem is solvable in O(n log n) time provided that the
path contains v0. Repeating the same argument and rooting the tree at the different
nodes, the overall complexity for solving the problem is O(n2 log n). �	
Remark 3.2 In the next sections we will distinguish between the discrete and continu-
ous versions of the problem of locating a subtree or a path on a tree. In the continuous
case it is assumed that the end points of the subtree or path to be located are not nec-
essarily nodes of the original tree, while in the discrete case these end points should
be nodes. Observe that a solution of the above continuous k-centrum path problem is
discrete. Therefore the discrete version of the k-centrum path problem is also solvable
in O(n2 log n).
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3.1.2 The continuous tactical k-centrum subtree/path problem on a tree

The tactical (minisum) median subtree (path) problem consists of locating a subtree
(path),Y ⊆ A(T ) under the size constraint, i.e., L(Y ) ≤ L . The demandpoints (nodes)
are allocated to the closest server, minimizing the weighted sum of the distances of
the nodes to their respective closest point on the facility. The continuous version of
this problem can be formulated as follows:

minY⊆A(T )

n∑
i=1

wi d(vi ,Y )

s.t. L(Y ) ≤ L ,

where d(vi ,Y ) is the distance from node vi to its closest point of Y . The case of
locating a median subtree is solvable in O(n) time, see Tamir [43] and the median
path in O(nα(n) log n) time, see Alstrup et al. [2]; where α(n) is the inverse of the
Ackermann function (see [39]).

In this section we consider the continuous tactical k-centrum subtree and path
problems. To the best of our knowledge, the time complexity for the k-centrum version
of locating a subtree using the continuous tactical model is still O(n3 + n2.5 I ), given
in Puerto and Tamir [36]; where I is the total number of bits needed to represent the
input. That algorithm is based on submodular optimization. Our approach will give us
an improved strongly polynomial complexity bound.

Theorem 3.4 1. The continuous tactical k-centrum subtree problem on a tree can
be solved in O(n log n) time.

2. The continuous tactical k-centrum path problem on a tree can be solved in
O(n(nα(n) log n)2) time.

Proof By Puerto and Tamir [36] the continuous tactical k-centrum subtree problem
on a tree satisfies a nestedness property, i.e., an optimal subtree contains an optimal
solution of the single facility k-centrum problem. Using the LP representation of this
problem, see Puerto and Tamir [36], and the fact that ZXL (r) can be computed for
this problem in O(n) time for any value r , see Tamir [43], we can apply Theorem 3.1
obtaining an overall complexity of O(n log n) time.

For the case of locating a k-centrum path on a tree, the function ZXL (r) can be
evaluated in O(nα(n) log n) time for any value r , see Alstrup et al. [2]. Next, we can
apply Theorem 3.1 on the LP formulation of the median path problem on a tree given
in Theorem 3.3 (we have to add the size constraint to this formulation). Thus, the
complexity of solving the k-centrum problem is O((nα(n) log n)2) provided that we
fix a node that must belong to the optimal path. Rooting the path on the different nodes
of the tree, the overall complexity is O(n(nα(n) log n)2) time. �	

3.1.3 The continuous strategic k-centrum subtree problem on a tree

The strategic median subtree problem consists of locating a subtree, Y ⊆ A(T ) but
instead of including an explicit bound on the length of this extensive facility, the length
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is a variable and the objective function of the problem consists of minimizing the sum
of the transportation cost and the length of the subtree. In this section we consider the
continuous versions of this problem. The problem can be formulated as follows:

minY⊆A(T )

n∑
i=1

wi d(vi ,Y ) + δL(Y ),

with δ ∈ R (in the case δ < 0 the optimal solution would be the complete tree). To
the best of our knowledge, the time complexity for solving the k-centrum version of
locating a subtree using the continuous strategic model is O(kn7), given in Puerto and
Tamir [36]. In the following we improve this complexity using our approach.

Theorem 3.5 The continuous strategic k-centrum subtree problem on a tree is solv-
able in O(n log n) time.

Proof Based on the results valid for the problem of locating a strategic median subtree
on a tree, the function ZXL (r) for the continuous strategic k-centrum subtree can be
evaluated inO(n) time for any value r , seeKimet al. [26]. ByPuerto andTamir [36] the
k-centrum strategic subtree problem on a tree also satisfies a nestedness property, i.e.,
an optimal subtree contains the optimal k-centrum point. Using the LP representation
of this problem in Puerto and Tamir [36], we can apply Theorem 3.1, obtaining an
overall complexity of O(n log n) time.

3.1.4 The single facility k-centrum problem

Finally, we wish to conclude Sect. 3 mentioning another family of problems where
this methodology can be successfully applied. In the paper by Kalcsics et al. [24],
the authors provide complexity results for solving the single point facility k-centrum
problem. Using ad hoc arguments in each framework space, they obtained complexity
bounds of O(mn log n) for undirected general networks and a linear bound for the
continuous case of locating a single facility k-centrum. Our approach can also be
applied to these two problems obtaining slightly worse complexity bounds, but with
the advantage of using a general tool based on the same methodology developed in
Theorem 3.1.

4 The k-sum integer problem

In this section we address the k-sum optimization problem over a subset of the lattice
of nonnegative integer points in Rn , i.e., X ⊂ Z

n+. Let XI = {x ∈ R
n : Ax = b, x j ∈

{0, 1, 2, . . .}, j = 1, . . . , n} be the region X for this particular case (integer case). The
next example demonstrates that unlike the linear case, even for the binary case, the
function ZXI (r) is not generally convex when k = 1, and is not generally unimodal
even when k = 3.

Example 4.1 Consider the directed shortest path problem from v1 to v7, defined
on a graph G = (V, E) with 7 nodes, V = {v1, v2, . . . , v7}. The graph con-
sists of two directed paths from v1 to v7. The first path consists of the 3 edges
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588 J. Puerto et al.

Fig. 1 Graph of Example 4.1

v1

v2 v3

v4 v5 v6

v7

1
4

4

2

2.5 2.5

3

(v1, v2), (v2, v3), (v3, v7) of lengths 1, 4 and 4, respectively. The second path con-
sists of the 4 edges (v1, v4), (v4, v5), (v5, v6), (v6, v7) of lengths 2, 2.5, 2.5 and 3,
respectively, see Fig. 1. Set the vector c = 0, and for each edge e let de be its length.
We show that the function ZXI (r) is not unimodal.

Since there are only two feasible paths from v1 to v7 it is easy to compute and see
that for k = 1, ZXI (0) = 9, ZXI (1) = 7, ZXI (2) = 4, ZXI (2.5) = 3, ZXI (3) = 3
and ZXI (4) = 4. Although, as we will later see, the function ZXI (r) between two
consecutive breakpoints is piecewise concave, in this example for k = 1 and k = 3,
this function is linear. Hence, the sequence of slopes between consecutive breakpoints
is −2,−3,−2, 0 and 1. This shows that ZXI (r) is not convex on the sequence of
breakpoints.

Next, consider the above shortest path model with k = 3. For this case we get
ZXI (0) = 9, ZXI (1) = 9, ZXI (2) = 8, ZXI (2.5) = 8, ZXI (3) = 9 and ZXI (4) = 12.
The sequence of slopes between consecutive breakpoints is 0,−1, 0, 2 and 4. It is easy
to see that each r ∈ [0, 1) is a local minimum point of ZXI (r), which is not a global
minimum point. Hence, for k = 3, ZXI (r) is not even unimodal.

4.1 The k-sum integer optimization with polynomially bounded variables and
d ≥ 0

In this section, we prove that if the components of the cost vector d are nonnegative
and all the integer variables are bounded by M = M(n,m), where M(n,m) is a
polynomial in m, n, (recall that A = (ai j ) with i = 1, . . . ,m, j = 1, . . . , n), then
the k-sum integer optimization problem is polynomially solvable assuming that the
matrix A is totally unimodular.

Using the above notation we have

ZXI (r) = kr + min
x∈XI

(
cx +

n∑
j=1

max{d j x j − r, 0}
)
. (3)

We decompose the interval [0, M max j=1,...,n{d j }] (assume without loss of generality
that M is integer) into consecutive intervals induced by the set of points {pd j }, p ∈
{0, . . . , M}, and j = 1, . . . , n. Consider an arbitrary interval of the above collection,
I = [pds, qdt ]with p, q ∈ {0, . . . , M}, and s, t ∈ {1, . . . , n}. For each j = 1, . . . , n,
let h j be the unique nonnegative integer such that the interval [h jd j , (h j + 1)d j ]

123



Revisiting k-sum optimization 589

contains I. Then, for each r ∈ I, the function f j (I, x j ) = max{d j x j − r, 0}, defined
over the nonnegative integers, satisfies f j (I, x j ) = 0 when x j ≤ h j , and f j (I, x j ) =
d j x j − r when x j ≥ h j + 1.

From the above we note that the function g(I, r) = kr + minx∈XI cx +∑n
j=1 max{d j x j − r, 0} is concave (minimum of a finite number of linear functions)

for r ∈ I. Specifically,

g(I, r) = kr + min
x∈XI

cx +
n∑
j=1

x j>h j

(d j x j − r). (4)

Hence, without loss of generality, we may conclude that the minimum of ZXI (r) in
the interval I is achieved in its extreme points, i.e., in {pds, qdt }, p, q ∈ {0, . . . , M}.

Theorem 4.1 Consider the k-sum integer optimization problem with objective func-
tion ZXI (r) defined in (3), and assume that thematrix A is totally unimodular. Suppose
further that all integer variables are bounded fromaboveby somepolynomial M(n,m).
Then, Z∗

XI
, the optimal solution of this problem, can be computed in strongly polyno-

mial time.

Proof By the above discussion Z∗
XI

can be computed by evaluating ZXI (r) for
O(nM(n,m)) values of the parameter r (the possible extreme points of the inter-
vals defining the partition of [0, M max j=1,...,n{d j }]). Specifically, for a fixed value
of r , we need to solve the following problem:

min cx +
n∑
j=1

max{d j x j − r, 0},

s.t. x ∈ XI .

The problem above can be solved in strongly polynomial time by substituting x j =
u j + v j + z j , j = 1, . . . , n, and solving the respective integer program, defined by a
totally unimodular system,

min c(u + v + z) +
n∑
j=1

(d j (
r/d j� − r/d j )v j + d j z j ),

s.t. A(u + v + z) = b,

u j ∈ {0, 1, . . . , �r/d j�}, j = 1, . . . , n,

v j ∈ {0, 1}, j = 1, . . . , n,

z j ∈ {0, 1, 2, . . .}, j = 1, . . . , n.

Since A is totally unimodular this problem is an LPwith {0,±1}-matrix and therefore,
by Tardos [47], it is solvable by a strongly polynomial algorithm. �	
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This result gives a positive answer to a conjecture in Punnen [37], since it proves
that k-sum optimization problem is polynomially solvable assuming that the constraint
matrix is totally unimodular and the variables are bounded.

As an application of the above result we have the following property for the Chi-
nese Postman Problem, see Granot et al. [16] where the k-centrum Chinese Postman
Delivery Problem is analyzed from a cooperative perspective.

Proposition 4.1 The k-sum Chinese Postman Problem defined on undirected con-
nected graphs or on strongly connected directed graphs is solvable in strongly
polynomial time.

Proof The Chinese Postman Problem, when defined on a strongly connected directed
graph, is a flow problem where the integer flow variables are bounded by the number
of edges of the graph. Actually, looking only at basic solutions of the respective
circulation problem,we can conclude that a sharper upper bound is |E |−|V |+1,where
|E | and |V | are the number of edges and nodes of the underlying graph G = (V, E).
When the above postman problem is defined on an undirected graph each variable can
take on the values 1 and 2. Applying Theorem 4.1 the result follows. �	
Remark 4.1 Similar arguments as the one above apply also to the rural postman prob-
lem (recall that the rural postman problem is an extension of the Chinese Postman
Delivery Problem, in which a subset of the edges from the graph are required to be
traversed at a minimal cost), which is thus also solvable in strongly polynomial time.

5 The k-sum combinatorial optimization problem

Here we consider the k-sum combinatorial optimization problem, i.e., X = {0, 1}n .
Therefore, given a finite set of elements E , where each e ∈ E is associated with a pair
of real weights (ce, de), and XC is a collection of subsets of E ; the minisum problem
is to find a subset S ∈ XC of minimum total weight, c(S) + d(S) = ∑

e∈S(ce + de).
The k-sum optimization problem with respect to the d weights is to find a subset
S ⊆ XC minimizing the sum of c(S) and the sum of the k-largest elements in the set
{de : e ∈ S}.

We use the following convention to handle the definition of the set of the k largest
elements when the cardinality of a subset is smaller than k. Each subset x ⊆ E is
viewed as a {0, 1} vector with E components. Thus, for x = (x1, . . . , x|E |) ∈ {0, 1}|E |,
the sum of the largest k elements with respect to the weights {de}, is the sum of the
largest k elements in the set {dexe : e ∈ E}.

The k-sum version of those combinatorial optimization problems which are effi-
ciently solvable for linear functions (assignment, shortest paths, matching, matroid,
et cetera) can also be solved in an efficient way when d ≥ 0. Indeed, as a result
of Bertsimas and Sim [6], Bertsimas and Weismantel [7], Punnen and Aneja [38], it
follows that solving the k-sum problem on the respective combinatorial model can be
done by solving O(t) linear optimization problems where t is the number of different
cost coefficients of the elements (e.g., edges of a graph, nodes of a graph, elements in
the ground set, etc.)
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The supposition that de ≥ 0, for each e ∈ E , which is made in the papers Bertsimas
and Sim [6], Bertsimas andWeismantel [7], Punnen andAneja [38] is used extensively
in the proofs. For example, in the proof of Theorem 3 in Bertsimas and Sim [6], based
on this nonnegativity supposition, they can relax the formulation and introduce the
constraint that at most k elements are selected, i.e.,

∑
e∈E ue ≤ k and consequently

the associated dual variable is nonnegative. With this relaxed constraint their problem
becomes equivalent to the one discussed in Punnen and Aneja [38]. (In Punnen and
Aneja [38], they discuss only the case when c = 0.)

In what follows we analyze the case of arbitrary {de}e∈E . Attempting to follow
Bertsimas and Sim [6], Punnen and Aneja [38], for the general case we need to impose
the constraint

∑
e∈E ue = k, then the dual variable associated with this constraint is

unrestricted in sign. The proof of Theorem 3 in Bertsimas and Sim [6] can be modified
to this case as well, obtaining the following result for general {de}:
Theorem 5.1 Suppose that for any real r the minisum problem with respect to the
weights (ce,max{0, de−r}), e ∈ E, is solvable in T (m) time,wherem = |E |. Then, the
k-sumoptimization problemwith respect to the d weights canbe solved in O(m′T (m)+
T ′(m)) time, where m′ is the number of distinct elements in the set {de : e ∈ E}, and
T ′(m) is the time to solve the original minisum problem with respect to the weights
(ce, de), e ∈ E. Moreover, if c is not required to be nonnegative T (m) = T (m′).

For example, if c = 0, andwe consider the shortest path problemon a directed graph
with nonnegative cycles with respect to the {de} weights, then the k-sum optimization
model can be solved by solving the original minisum problem and in addition O(m′)
shortest path problems with nonnegative weights. A detailed analysis of this problem
is presented in Sect. 5.1.4.

5.1 Applications in the combinatorial case

5.1.1 The discrete p-facility k-centrum location problem on trees and paths

LetG = (V, E) be an undirected path or tree network with node set V = {v1, . . . , vn}
and edge set E = {e2, . . . , en}.

To formulate the p-facility median problemwewill use the following sets of binary
variables:

y j =
{
1, if a center is located at node v j ,

0, otherwise,
j = 1, . . . , n,

xi j =
{
1, if the node vi is assigned to center j,

0, otherwise.
i, j = 1, . . . , n.

The model is formulated as:

min
n∑

i=1

n∑
j=1

ci j xi j

s.t. xi j ≤ y j , ∀i, j = 1, . . . , n, (5)
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n∑
j=1

y j = p, (6)

n∑
j=1

xi j = 1, ∀i = 1, . . . , n, (7)

xi j , y j ∈ {0, 1}, ∀i, j = 1, . . . , n. (8)

Let us denote by Xmed(p) the lattice points defined by (5)–(8).

Path case:
For the case of a path the complexity will depend on the time needed to solve the
minisum problem with the pseudo metric induced by the values max{d(vi , v j )−r, 0}.
Hassin and Tamir [22] solve the p-median on a path in O(pn) time. In fact, they
consider the following general model:

min
∑
i∈S

ci +
n∑

i=1

fi (d(vi , S))

s.t. S ⊆ N

|S| ≤ p,

where fi (d(vi , S)) is a real monotone nondecreasing function of d(vi , S). In our case,
assuming that v1 < · · · < vn , and 1 ≤ j ≤ k ≤ n, we have that

w( j, k) =
k∑

t= j

ft (d(vt , v j )) =
k∑

t= j

wt max{vt − v j − r, 0},

w( j, k) =
k∑

t= j

ft (d(vt , vk)) =
k∑

t= j

wt max{vk − vt − r, 0}.

These values describe the recursive approach defined byHassin andTamir [22] through
dynamic programming. In what follows we show how these values can be computed
in a preprocessing phase in O(n) time.

w( j, k) =

⎧⎪⎪⎨
⎪⎪⎩

k∑
t : vt>v j+r

wt (vt − v j − r), if v j + r < vk,

0, otherwise,

w( j, k) =

⎧⎪⎪⎨
⎪⎪⎩

k∑
t : vt≤vk−r

wt (vk − vt − r), if vk − r > v j ,

0, otherwise.

Hence, we have that
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w( j, k) =
{
AV1(k) − AV2( j) − (A1(k) − A2( j))(vt + r), if v j + r < vk

0, otherwise,

w( j, k) =
{

(A3(k) − A1( j − 1))(vk − r) − (AV3(k) − AV1( j − 1)), if vk − r > v j

0, otherwise,

where

AV1(k) =
k∑

t=1

wtvt , A1(k) =
k∑

t=1

wt

AV2( j) =
∑

t :vt<v j+r

wtvt , A2( j) =
∑

t :vt<v j+r

wt

AV3(k) =
∑

t :vt<vk−r

wtvt , A3(k) =
∑

t :vt≤vk−r

wt .

In a preprocessing phase these six coefficient sequences can be computed in O(n)

time. Summarizing we have the following complexity result.

Theorem 5.2 The discrete p-facility k-centrum problem on a path is solvable in
O(pn3) time.

Proof Sorting the different costs values (ci j ) for i, j = 1, . . . , n, in increasing order,
we get the ordered cost sequence:

c(1) := 0 < c(2) < · · · < c(#C) := max
1≤i, j≤n

{ci j }.

However, we can still apply the k-sum result since it requires to solve O(#C) problems
of the form:

min
n∑

i=1

n∑
j=1

max{ci j − c(�), 0}xi j

s.t. x ∈ Xmed(p) (9)

The above set of coefficients, i.e., c̃�
i j = max{ci j − c(�), 0} corresponds to the

pseudometric induced with respect to a neighbor of radius c(�). As we have proved
above, the algorithm in Hassin and Tamir [22] also applies to Problem (9) with a
complexity of O(pn). Therefore, by Theorem 5.1, since we have at most O(n2)
different values for ci j , the k-centrum p-facility on a path is solvable in O(pn3). �	
Tree case:
The problem of locating a median subtree is solvable in polynomial time provided that
the ci j are distances induced by the metric of shortest paths on a tree (it is NP-hard
for a general linear objective function.) Actually, by the algorithm in Tamir [42] this
problem can be solved in O(pn2) time. Therefore, following similar arguments to the
ones in Theorem 5.2, we have the following result.
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Theorem 5.3 The discrete p-facility k-centrum on a tree is solvable in O(pn4).

This complexity improves upon the O(min(k, p)kpn5) bound in Tamir [44] and equals
the complexity reported in Kalcsics [23], attained using ad hoc arguments, whereas
we use once again the general methodology that follows from our approach.

5.1.2 The discrete tactical k-centrum subtree/path problem on a tree

Here we analyze the discrete version of the tactical model described in Sect. 3.1.2,
i.e., the leaves of the extensive facility (path or tree) are requested to be located at the
nodes of the tree.

The discrete tactical median subtree problem is NP-hard, see Hakimi et al. [19],
whereas the case of locating a discrete median path is solvable in O(n log n) time, see
Alstrup et al. [2]. Applying Theorem 5.1, the k-centrum version of this model can also
be solved in O(n3 log n) time.

5.1.3 The discrete strategic k-centrum subtree problem on a tree

Observe that for the location of a strategic median subtree, the continuous and the
discrete versions of the problem are equivalent, see Kim et al. [26]. To the best of our
knowledge, the best complexity for the k-centrum version of locating a subtree using
the strategic model is O(kn3) given in Puerto and Tamir [36]. Using Theorem 5.1 we
improved the complexity stated above to O(n3) time.

5.1.4 k-sum s − t-shortest path problem

Let us assume that the directed underlying graph G does not have edges of negative
length or more generally that it does not contain directed cycles of negative length. The
k-sum shortest path problem can be solved in O(n2m2) time provided that any simple
s − t-path contains at least k arcs, otherwise this problem is NP-hard, see Garfinkel
et al. [15]. We improve the complexity by using Theorem 5.1.

Theorem 5.4 The complexity of the k-sum s − t-shortest path problem is O(m2 +
mn log n) time.

Proof The time to solve the single-source s − t-shortest path problem on a network
with n nodes and m edges, having nonnegative lengths, is O(m + n log n), see Ahuja
et al. [1] (observe that we can assume that all arc lengths are nonnegative because the
number of arcs whose lengths appear in the objective function of the k-sum s − t-
shortest path problem is k and then, we can add an arbitrary constant to every arc
length without changing the optimal solution, see Garfinkel et al. [15]). Therefore,
since the number of different d values is bounded by m, then by Theorem 5.1 the
k-sum shortest path problem can be solved in O(m2 + mn log n) time. �	
Remark 5.1 The k-sum maximum weight matching problem with positive and neg-
ative weights is solvable in O(nm(m log log logm/n n + n log n)) time, applying
Theorem 5.1 and the algorithm byGabow et al. [14] for themaximumweightmatching
problem (recall that a matching is a set of edges without common vertices.)
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5.1.5 p-centered partition problems

Another application of Theorem 5.1 is to solve the k-centrum p-centered partition
problem with flat costs on a tree. Following Apollonio et al. [3], recall that flat costs
mean that they are general and independent of the distance metric induced by the
shortest path distances in the graph G. Let G = (V, E) be a connected undirected
graph with |V | = n. Assume that V is partitioned into two subsets, S and U , such
that S ⊂ V , with |S| = p. S is the set of centers, and U = V \S is the set of units that
must be assigned to some centers in S. There is a cost function c : U × S → R which
associates a cost cis with each pair (i, s), i ∈ U , s ∈ S.

A connected p-partition of G is a partition of the vertex set V into p non empty
subsets (components) such that each component induces a connected subgraph of G.
A connected p-partition is a p-centered partition if each component contains exactly
one center (see [3]).

As in Apollonio et al. [3], we assume that the costs are flat, i.e., independent of
the distance metric induced by the graph G. In Apollonio et al. [3] it is proved that
finding a p-centered partition with minimum total cost is NP-hard in general graphs
but polynomially solvable on a tree.Moreover, theminisum problem on a tree is solved
by a dynamic programming algorithm in O(np) time.

Theorem 5.5 The k-centrum p-centered partition problem on a tree is solvable in
O(n2 p2) time.

Proof We observe that the minisum problem is solvable in O(np) time with respect to
the costs (cis, dis) for all i ∈ U , s ∈ S and also with respect to (cis,max{dis − r, 0})
for all i ∈ U , s ∈ S. Thus, by a direct application of Theorem 5.1 we obtain that the
complexity for solving the k-centrum problem is O(n2 p2). �	

6 Extension to the ordered median function

As we will later see, the k-sum function is a particular case of the ordered median
function. Therefore, a natural question is whether the methodology developed in the
previous sections can be extended to this more general problem. Recall that for a given
x ∈ R

n and vectors λ, d ∈ R
n , the value of the ordered median function is

n∑
j=1

λ j (dx)( j), (10)

where

(dx)(1) := dσ1xσ1 ≥ · · · ≥ dσn xσn := (dx)(n),

and σ is a permutation of {1, · · · , n}.
Different choices of λ yield different types of objective functions. To see that the

ordered median objective function generalizes well-known objective functions, note
that for λ = (1, 1, . . . , 1) the ordered objective function is equivalent to the median
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objective; for λ = (1, 0, . . . , 0, 0) to the center problem; for λ = (1, α, . . . , α) with
0 ≤ α ≤ 1 to the α-centdian problem, a convex combination of the median and
the center objective functions; and for λ = (1, . . . , 1, 0, . . . , 0), where the first k
entries are set to one and the last n − k entries are zero, is equivalent to the k-centrum
problem. Other objectives may also be of practical interest. One example is to take λ =
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0), where the first k1 and last k2 entries are zero. Thismeans
to average the “middle” part, the so-called (k1 + k2)-trimmed mean, which is a robust
measure in statistics. Another example is to take λ = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1),
where the first k1 and the last k2 entries are set to one: this leads to the problem of
minimizing the sum of the k1 largest costs and the k2 smallest costs; the corresponding
ordered objective function searches for minimizing the average of those costs that are
very large and rather small. Clearly, classical objective functions can easily be cast
under this common pattern. Moreover, new meaningful objective functions are easily
derived, as shown above.

As mentioned at the beginning of this section, a natural question is whether the
methodology developed in the previous sections can be extended to the orderedmedian
optimization problem or, at least, to its convex version, namely, when λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0. The extension of this theory to those problems would imply the polynomial
complexity for solving them whenever the corresponding minisum problems are also
polynomially solvable. Scanning the specialized literature one can find some partial
answers. For instance, it is known that the bottleneck and lexicographic bottleneck
models, see Burkard and Rendl [8], Della Croce et al. [11], are polynomially solvable.
Moreover, minimizing the balance or range (max-min) is also efficiently solvable by
enumerating all the possible combinations of the maximum and the minimum, and
then for each such combination a feasibility problem is solved, seeMartello et al. [28].

6.1 Convex case λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

Assuming a convex ordered median vector, i.e., λ1 ≥ . . . ≥ λn ≥ 0, the result in
Bertsimas and Sim [6], Bertsimas and Weismantel [7], Punnen and Aneja [38] can be
almost directly extended to provide polynomial algorithms whenever the number of
distinct components of λ is constant. Observe that this assumption is satisfied by sev-
eral well-known problems in facility location, namely minisum (median), maximum
(bottleneck or center), centdian, k-sum (k-centrum), et cetera. Although in general
the number of different lambda values could be n, in most of the cases mentioned
above, the representation of the problems given by the convex ordered median objec-
tive function has at most two different lambda values (minisum, maximum, centdian
or k-centrum). Before we give the formulation of the problem under study, we recall
a reformulation of expression (10) for the convex case (see [32] for further details):

n∑
j=1

λ j dσ̄ j = max
σ∈P(1,...,n)

n∑
j=1

λ j dσ j

whereP(1, . . . , n) is the set of permutations of {1, . . . , n} and σ̄ ∈ P(1, . . . , n), such
that, dσ̄1xσ̄1 ≥ · · · ≥ dσ̄n xσ̄n .
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Applying this transformation, the formulation of the problem under study is:

minx∈X

⎧⎨
⎩cx + max

σ∈P(1,...,n)

⎧⎨
⎩

n∑
j=1

λ j dσ j xσ j

⎫⎬
⎭

⎫⎬
⎭ , (11)

The above formulation can be rewritten in an equivalent way, using λn+1 := 0,

minx∈X

⎧⎨
⎩cx + max

σ∈P(1,...,n)

⎧⎨
⎩

n∑
k=1

(λk − λk+1)

k∑
j=1

dσ j xσ j

⎫⎬
⎭

⎫⎬
⎭ . (12)

This problem can be formulated as a function of the sum of the k-largest distances:

minx∈X

⎧⎨
⎩cx +

n∑
k=1

(λk − λk+1)max

⎧⎨
⎩

∑
j∈Sk

d j x j : Sk ⊆ {1, . . . , n}, |Sk | = k

⎫⎬
⎭

⎫⎬
⎭ .

Therefore, the problem above can be reformulated as:

ZX (r1, . . . , rn) := min cx +
n∑

k=1

(λk − λk+1)

⎛
⎝ktk +

n∑
j=1

p jk

⎞
⎠

s.t. p jk ≥ d j x j − rk, j, k = 1, . . . , n,

p jk ≥ 0, j, k = 1, . . . , n,

x ∈ X.

Again, this problem can be reformulated as:

min
x∈X,(r1,...,rn)∈Rn

cx +
n∑

k=1

(λk − λk+1)

⎛
⎝ktk +

n∑
j=1

max{0, d j x j − rk}
⎞
⎠ . (13)

Observe that themain difference of this formulationwith respect to the one given by
(2) for the k-centrum problem is that the former depends on an n-dimensional vector
r = (r1, . . . , rn) and the latter depends on a scalar r . If we have k0 different values of
the vector λ, then formulation (13) would depend only on a k0-dimensional vector.

Theorem 6.1 If the number of different values among the components of the vector
λ = (λ1, . . . , λn) is constant, say k0, we have that

1. The discrete convex ordered median problem can be solved in O(nk0TC (n,m))

time,where TC (n,m) is the combinatorial complexity of evaluating ZXC (r1, . . . , rk0)
for any vector (r1, . . . , rk0) ∈ R

k0 .
2. Let TL(n,m) be the combinatorial complexity of evaluating ZXL (r1, . . . , rk0)

and C(n,m) be the number of comparisons of the algorithm for evaluating
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ZXL (r1, . . . , rk0). Suppose that C(n,m) can be divided into s phases, where
Ci (n,m) independent comparisons are performed in each phase i = 1, . . . , s,
and let γ (k0) = 3O(k20).

The continuous convex ordered median problem can be solved in time bounded
above by

O
(
k30γ (k0)TL(n,m)

( s∑
i=1


logCi (n,m)�
)k0)

.

Proof The complexity in (1) of Theorem 6.1, follows from a straightforward applica-
tion of Theorem 5.1, by solving nk0 sum problems on XC .

The complexity of (2) is obtained by applying the multi-parametric approach by
Cohen and Megiddo [9] on XL . �	

A first application of this result is to the multifacility ordered median location
problem with two different lambda values a > b on fork-free graphs. (See Baïou et
al. [5] for a definition of fork-free graphs.) The problem can be formulated as:

min
x∈Xmed(p),(r1,...,rk0 )∈Rk0

cx + ∑
k:λk �=λk+1

(a − b)(ktk + ∑n
j=1 max{0, d j x j − rk}),

(14)

where Xmed(p), defined by (5)–(8), is the p-median polytope on the augmented graph
that includes as new nodes the elements of an FDS for this problem (recall that an FDS,
finite dominating set, is a finite cardinality set containing a solution of the problem),
which is known to have a cardinality of O(n4), Kalcsics et al. [25]. It is well-known
that the p-median polytope, defined on a general graph, is not integer. Nevertheless,
it is integer on the class of fork-free graphs (which includes among others, paths and
stars), see e.g. Baïou et al. [5].

The above representation allows us to apply the second part of Theorem 6.1. In this
case, the complexity of solving the problem for a given set of parameters, applying
the algorithm in Tamir et al. [45], is pn8 (using that the cardinality of an FDS for
this problem is O(n4)). Each application of that algorithm can be decomposed into n
phases (one per demand point) and it requires O(n4) comparisons. Therefore, applying
Theorem 6.1 the overall complexity for solving the problem is O(pn10(log n)2) time.

Proposition 6.1 The p-facility convex ordered median problem with only two distinct
lambda values a > b ≥ 0 on fork-free graphs can be solved in O(pn10(log n)2) time.

Another application of Theorem 6.1 is to provide a strong polynomiality result
for the convex ordered minimum cost flow problem with a constant number k0 of
different lambda values. Indeed, using the representation given in (13), for each choice
of (r1, . . . , rk0) the convex ordered minimum cost flow problem can be reduced to the
solution of a minimum cost flow problem where the cost on each arc is a piecewise
linear convex function of k0 pieces. This problem can be solved in strongly polynomial
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time, Ahuja et al. [1], and therefore by an application of Theorem 6.1 we get the
following result.

Proposition 6.2 The convex ordered minimum cost flow problem with lambda vector
having a constant number k0 of different values can be solved in strongly polynomial
time.

We consider now the case where the number of different values of the vector λ is not
fixed, i.e., it is part of the input. In this situation, the above analysis is not applicable
but still we can give some polynomiality result.

Proposition 6.3 The continuous convex ordered median problem on the polytope X
can be solved in polynomial time.

Proof We observe that the inner maximum problem in (11) can be rewritten as:

max
σ∈P(1,...,n)

n∑
j=1

λ j dσ j xσ j = max

⎧⎨
⎩

n∑
i=1

n∑
j=1

λ j di xi pi j :
n∑

i=1

pi j = 1, ∀ j;
n∑
j=1

pi j = 1, ∀i
⎫⎬
⎭ .

Hence, dualizing the maximum problem in the right-hand-side of the above equation,
(11) is equivalent to:

min c′x + ∑n
i=1 ui + ∑n

j=1 v j

s.t. ui + v j ≥ λ j di xi , ∀ i, j = 1, . . . , n,

x ∈ X.

The above is a linear programming problem that can be solved in polynomial time, and
thus the result follows. (It is still unknown whether a strongly polynomial algorithm
exists.) �	

6.2 The general case

The ordered median problem in its general case does not assume any sorting in the
lambda weights. The formulation of the problem is

minx∈X

⎧⎨
⎩cx +

⎧⎨
⎩

n∑
j=1

λ j dσ j xσ j : dσ1xσ1 ≥ · · · ≥ dσn xσn

⎫⎬
⎭

⎫⎬
⎭ . (15)

However the transformation (12) used in the convex case, based on the representation
of the k-sum problem, does not apply once some negative coefficient appears.

Let Sk(dx) = ∑k
j=1 dσ j xσ j : dσ1xσ1 ≥ · · · ≥ dσn xσn , k = 1, . . . , n. Next, the

general case can be formulated as:

minx∈X

{
cx +

n∑
k=1

(λk − λk+1)Sk(dx)

}
. (16)
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This problem can be rewritten as:

minx∈X

⎧⎨
⎩cx +

∑
k:λk−λk+1>0

(λk − λk+1)Sk(dx) +
∑

k:λk−λk+1<0

(λk − λk+1)Sk(dx)

⎫⎬
⎭ .

Therefore, using again the transformation developed in Sect. 6.1 for the k-sum terms
with positive coefficient, this problem can be formulated as:

ZX (r1, . . . , rn) := min cx +
∑

k:λk−λk+1>0

(λk − λk+1)
(
ktk +

n∑
j=1

p jk

)

+
∑

k:λk−λk+1<0

(λk − λk+1)Sk(dx)

s.t. p jk ≥ d j x j − rk, j, k = 1, . . . , n, λk − λk+1 > 0,

p jk ≥ 0, j, k = 1, . . . , n, λk − λk+1 > 0,

x ∈ X.

To proceed furtherwe need a representation of the problem thatminimizes the negation
of the sum of the k-largest d cost coefficients, namely

min
x∈X −Sk(dx) = min

x∈X min
n∑
j=1

−d j x j y j

s. t.
k∑
j=1

y j = k,

0 ≤ y j ≤ 1, ∀ j = 1, . . . , n,

= min
x∈X max

(
krk +

n∑
j=1

p j

)

s.t. rk + p j ≤ −d j x j , ∀ j = 1, . . . , n,

p j ≤ 0, ∀ j = 1, . . . , n.

Plugging this formulation into the expression of ZX (r1, . . . , rn) above, results in:

min
x∈X,(r1,...,rn)∈Rn

{
cx +

∑
k:λk−λk+1>0

(λk − λk+1)(krk +
n∑
j=1

max{0, d j x j − rk})

+
∑

k:λk−λk+1<0

(λk+1 − λk)max
(
krk +

n∑
j=1

p jk

)}

s.t. rk + p jk ≤ −d j x j , j, k = 1, . . . , n, λk − λk+1 < 0,

p jk ≤ 0, j, k = 1, . . . , n, λk − λk+1 < 0. (17)
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Observe that the main difference of this formulation, compared with the one given
for the convex ordered median problem (13) is that another valid expression for
the terms with negative coefficients is necessary. In spite of that, the evaluation of
ZX (r1, . . . , rn) given by (17) is performed by solving a multiparametric program, but
in this case ZX is not convex, even in the continuous case. Therefore, results similar
to that of Theorem 6.1 may also hold for the general case provided that an efficient
oracle is available for the evaluation of ZX .

6.2.1 Minimizing the middle range problem

One application of the above result is the minimization of the middle range prob-
lem. This problem can be stated as finding the solution that minimizes the sum of the
n−k1−k2 central sorted values of the vector (d j x j ) j=1,...,n . It can be cast for the non-
convex case of the ordered median objective with λ = (0, k1. . ., 0, 1, . . . , 1, 0, k2. . ., 0).
Let k3 = n − k2. For a given x ∈ {0, 1}n , let ∑n

i=1 λ j d j x j = Sk3(dx)− Sk1(dx). The
optimization problem is then defined by:

min Sk3(dx) − Sk1(dx)

s.t. x ∈ X,

or equivalently

min
x∈X min

y j+t≥d j x j ;y j ,t≥0∀ j
k3t +

n∑
i=1

y j − max∑n
j=1 v j=k1, 0≤v j≤x j≤1,∀ j

n∑
j=1

v j d j .

It can be rewritten as:

min k3t +
n∑

i=1

y j −
n∑
j=1

v j d j

s.t. x ∈ X,

y j ≥ d j x j − t, ∀ j = 1, . . . , n,

n∑
j=1

v j = k1,

v j ≤ x j , ∀ j = 1, . . . , n,

y j , t, v j ≥ 0, ∀ j = 1, . . . , n.

Let us assume w.l.o.g. that d1 ≥ · · · ≥ dn . Following the discussion in the previous
section, we observe that for any t ∈ [d�, d�−1], we have the following equivalent
formulation of the above problem:

123



602 J. Puerto et al.

k3d� + min
�−1∑
j=1

(d j (1 − v j ) − d�)x j

s.t. x ∈ X,
n∑
j=1

v j = k1,

0 ≤ v j ≤ x j , j = 1, . . . , n. (18)

Therefore, solving the middle range problem is equivalent to solving the above
problem for the different intervals [d�, d�−1] for all � = 2, . . . , n. The question is
how to solve the above problem. For each d� one must consider the

(
�−1
k1

)
different

forms of fixing the v-variables and for each one of them solve the resulting linear
problem (18) with those variables already fixed. Therefore the overall complexity is
O(T (n)(#D)k1), where T (n) is the complexity of solving the corresponding minisum
problems that appear in (18) and #D is the number of distinct values for {d j }. Clearly,
this approach is in general non polynomial. If we assume that the number k1 of upper
trimmed components is fixed then the above approach is also polynomial.

7 Concluding remarks

An interesting case that falls within the framework considered in this paper and
deserves a bit of attention is the case where X is a matroid. Now, the k-sum prob-
lem looks for a base that minimizes the sum of the k-largest costs. For a matroidal
system any ordered median function (not only the k-sum function) with non negative
λ-weights is optimized by the base that optimizes the minisum problem. This result
was already observed by Fernández et al. [12], and follows from the isotonicity of
the ordered median function (see, for instance Theorem 6.1, page 276 in [27]). It
applies, among many others, to the problem of minimizing the middle range problem
on a matroid, see Sect. 6.2.1. In addition, one can also observe that this result is still
applicable when X is an extended Polymatroid, see Theorem 10.1.6. in Grötschel et
al. [17].

The case where some λ-weights could be negative is not so clear and needs a
deeper analysis. In the following we report some partial answers. We can solve the
corresponding ordered median problem on matroidal systems with a constant number
of coefficient values using separators andmatroid intersection algorithms.We illustrate
this approach with the problem of minimizing the sum of the k-largest minus the t
smallest elements. In general, we do not know what is the complexity of this problem.
Nevertheless, the latter model can be efficiently solved for matroidal systems using
separators. Suppose that d1 ≥ d2 ≥ · · · ≥ dm are the values of the coefficients of the
ground set E . We solve O(m2) subproblems for each pair i < j . Consider the three
subsets: E1 = {e1, . . . , ei }, E2 = {ei+1, . . . , ei+ j } and E3 = {ei+ j+1, . . . , em}.

With each ek ∈ E1 associate a coefficient dk , with each ek ∈ E2 associate the
coefficient 0, and with each ek ∈ E3 associate a coefficient −dk .
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Now, for each fixed i < j , we use matroid intersection to find an optimal base of
cardinality n̄, w.r.t. these weights which contain at most k elements from E1, at most
t elements from E3, and at most n̄ − k − t from E2.

The above analysis extends further to any ordered median problem with a constant
number of distinct coefficient values. Since it translates into solving a polynomial
number of problems with a fixed number of separators.
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